
EvilModel: Hiding Malware Inside
of Neural Network Models

Zhi Wang, Chaoge Liu, Xiang Cui

◎ Security

26th IEEE Symposium on Computers and Communications (IEEE ISCC 2021)

Athens, Greece

September 2021

• Background and Motivation

• Technical Design

• Experiments and Evaluation

• Mitigation

Contents

12-Oct-222

Background

12-Oct-223

• Advanced malware campaigns are the main threats to computer security.

• Attackers need to communicate with the malware covertly to send customized commands and payloads.

• Some methods of covertly transmitting messages are widely used in the wild, but they are not suitable for

large-sized binary payloads.

APT

Botnet

Ransomware

Backdoor

Trojan

IP theft

Mining

Control

DDoS

Ransom

Destroy

Dark market

Year Name Platform

2009 upd4t3 Twitter, Tumblr

2014 Garybot Twitter

2015 Hammertoss Twitter, GitHub

2015 MiniDuke Twitter

2017 ROKRAT Twitter, Yandex

2017 PlugX Pastebin

2018 Comnie GitHub, Blogspot

2018 HeroRat Telegram

2019 DarkHydrus Google Drive

2019 Pony Bitcoin

2019 Glupteba Bitcoin

2019 IPStorm IPFS

2020 Turla Gmail

Background

12-Oct-224

For delivering large-sized malware, some attackers

attach the malware to benign-looking carriers.

Or Steganography

Decode at https://stylesuxx.github.io/steganography/

Background

12-Oct-225

Can malware be hidden inside of neural networks?

A neural network model has many neurons,

with millions of parameters inside.

StegoNet

“Neural Network Backdoor”

YES

Background

12-Oct-226

StegoNet

“Neural Network Backdoor”

Concept

Low embedding rate, high performance loss, extra info

• Disassembled malware -> Evade detection.

• Redundant neurons -> No significant

performance loss.

• Large size models -> Large size malware.

• Don’t rely on software vulnerabilities.

• Wide application of AI -> Universal.

Advantage

Introduction

12-Oct-227

Fast substitution

Input Layer Hidden Layers Output Layer

Inputs Outputs

Weights Weights

Ethical Considerations. The combination

of neural networks and cyber attacks is a

forwarding trend. We intend to provide a

possible scenario for security researchers

and vendors to mitigate this kind of attack

in advance.

✓ Higher embedding rate

✓ No extra info

✓ Lower performance loss

✓ Capable of different models Embedding capacity of DNN models

Embedding impact on model performance

1

2

3

Technical Design

12-Oct-228

x1

x2

...

xn

w1

w2

...

wn

b y = f (wi xi, b)

Inputs
Connection

weights

Activation

threshold (bias)
Output

Input Layer Hidden Layers Output Layer

Inputs Outputs

Weights Weights

b1

x1

x2

xn

w11

w12
w1n

f (w1i xi, b1)

Basic structure of neural network models

n connection weights

one bias

n+1 parameters in a neuron

m(n+1) parameters in a layer

bm

4(n+1) Bytes in a neuron

4m(n+1) Bytes in a neuron

32 bits floating-point number

Technical Design

12-Oct-229

Parameters in a neuron

[-0.0031334725208580494, -0.009729900397360325,
 0.0211751908063888550, -0.001930642407387495,
 -0.0167736820876598360, -0.015056176111102104,

 0.0092817423865199090, -0.011762472800910473]

2048 parameters, 1001 negative numbers, 1047 positive numbers

4

79

191

230
260

237 242 237 225
212

120

11

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12

Q
u

a
n

ti
ty

Weights Values

Malware bytes Floating-point numbers

45 76 69 6c 4d
6f 64 65 6c 49
53 43 43 32 31

Sign Exponent Mantissa

0 1 8 9 318bits 23bits

IEEE Standard for Floating-Point Arithmetic

±1.𝑚 × 2𝑛

BC40B763

The absolute value

is determined by

the exponent part.

BCFFFFFF BC000000

-0.0312499981374 -0.0078125

Prefix: 0x3C 0x38 0xBC 0xB8

Technical Design

12-Oct-2210

0

100

200

300

400

500

600

700

1 2 3 4

Fast substitution

0x3C, 0xBC

1 byte prefix 3 bytes malware

3C/BC

3C/BC

Start (length)

3C/BC

3C/BC

BCXXXXXXXX 3CXXXXXXXX

63%

Overall Workflow

12-Oct-2211

• Embed the malware in the model

• Evaluate the performance

• Retrain the model if the loss

exceeds an acceptable range

• Publish the malware-embedded

model

Attackers
delivering a payload

Preparation Embedding Spreading

Malware

DNN model

Evaluate

Re-training

Extract Checking Execute

• Prepare the model (design a

model, or download a pre-

trained model)

• Train or fine-tune the model

• Receive the model.

• Extract malware from the model

• Check the integrity

• Execute the malware

Receiver
a program injected

on target device

Experiments Setup

12-Oct-2212

Self-trained model Public pre-trained models

AlexNet on Fashion-MNIST
Input

224x224x1

5x5x256=6400
4096 4096

Output

10x1

Convolution Layers Fully Connected Layers

ReLU

ReLU

FC.0
FC.1

FC.2

(BN)

(BN)

10x1

FC.0:
6400×3

1024
= 18.75KB per neuron

FC.1:
4096×3

1024
= 12KB per neuron

Size 178MB Accuracy
No BN 93.44%

BN 93.75%

Batch normalization

No. Net Length Acc.

1 Vgg19 548.14MB 74.22%

2 Vgg16 527.87MB 73.36%

3 Alexnet 233.1MB 56.52%

4 Resnet101 170.45MB 77.37%

5 Inception 103.81MB 69.86%

6 Resnet50 97.75MB 76.13%

7 Googlenet 49.73MB 62.46%

8 Resnet18 44.66MB 69.76%

9 Mobilenet 13.55MB 71.88%

10 Squeezenet 4.74MB 58.18%

10 pre-trained models on ImageNet from

PyTorch public repositories

1

2

Experiments

12-Oct-2213

Self-trained model1

i) Does the method work?

ii) How much malware can be embedded in the model?

iii) What is the performance degradation on the model?

iv) Does batch normalization help?

v) Which layer is more suitable for embedding?

vi) How to restore the accuracy by retraining?

vii) Can the malware-embedded model pass the security

scan by anti-virus engines?

No. Hash Length Type VirusTotal

1 4a44 3161 8.03KB DLL 48/69

2 6847 b98f 6KB DLL 33/66

3 9307 9c69 14.5KB EXE 62/71

4 5484 b0f3 18.06KB RTF 32/59

5 83dd eae0 58.5KB EXE 67/71

6 7b2f 8c43 56KB EXE 63/71

7 e906 8c65 64.27KB EXE 64/71

8 23e8 5ee1 78KB XLS 40/61

1. https://github.com/InQuest/malware-samples

2. Hash are the first 4 bytes of SHA256

3. VitusTotal are the detection rate in VirusTotal

(virus reported engines / all participated engines)

Malware samples in Exp. 1

5x5x256=6400
4096 4096

Output

10x1

ReLU

ReLU

FC.0
FC.1

FC.2

(BN)

(BN)

10x1

Experiments

12-Oct-2214

1 Q1. Does the method work?

1

2

3

4

5

6

5x5x256=6400
4096 4096

Output

10x1

ReLU

ReLU

FC.0
FC.1

FC.2

(BN)

(BN)

10x1

FC.1,12KB

8.03KB

6KB

14.5KB

18.06KB

58.5KB

56KB

1

1

2

2

5

5

93.44%

93.45%

93.44%

93.43%

93.44%

93.45%

93.44%

93.43%

93.42%

93.44%

93.44%

93.44%

FC.1 FC.0

93.75%

93.75%

93.75%

93.75%

93.75%

93.74%

93.74%

93.73%

93.69%

93.70%

93.68%

93.70%

FC.1 FC.0

no BN BN

FC.0, 18.75KB

1

1

1

1

4

3

93.44% 93.75%

No huge

degradation

No hash change

It works.

Experiments

12-Oct-2215

1
Q2. How much malware can be embedded in the model?

Q3. What is the performance degradation on the model?

Q4. Does batch normalization help?

1-6

3-8

5

10

…

4095

FC.1

FC.0

0

0.2

0.4

0.6

0.8

1

1 201 401 601 801

FC.1

FC.0

AlexNet

0

0.2

0.4

0.6

0.8

1

1 201 401 601 801

FC.1

FC.0

AlexNet with BN

Structure
Initial

accuracy
Layer

No. of replaced neurons with Acc.

93% (-1%) 90% 80%

no BN 93.44%
FC.1 1785 2020 2305 2615

FC.0 220 600 1060 1550

BN 93.75%
FC.1 2105 2285 2900 3290

FC.0 40 55 160 3290

acc. < 93%,1785 neurons

acc. < 90%,2020 neurons

acc. < 93%,2105 neurons

acc. < 90%,2900 neurons

acc. < 92.75%,2285 neurons, 26.8MB

2285 x 12 / 1024 = 26.8 MB of

malware can be embedded

within 1% accuracy loss.

Experiments

12-Oct-2216

1 Q5. Which layer is more suitable for embedding?

0

0.2

0.4

0.6

0.8

1

100% 2100% 4100% 6100% 8100% 10100%

conv.0
conv.1
conv.2
conv.3
conv.4
fc.0
fc.1

0

0.2

0.4

0.6

0.8

1

100% 2100% 4100% 6100% 8100% 10100%

conv.0
conv.1
conv.2
conv.3
conv.4
fc.0
fc.1

FC layers FC layers

AlexNet AlexNet with BN

For fully connected layers, FC.1 is more suitable for embedding;

for convolution layers, conv.0 is more suitable.

conv.0conv.1
conv.2

conv.3

conv.4

conv.0

conv.1

conv.2

conv.3

conv.4

fc.0

fc.1
fc.0

fc.1

Experiments

12-Oct-2217

1 Q6. How to restore the accuracy by retraining?

Freeze the neurons

requires_grad = false

parameters will not be updated during the training

50

100

…

4050

FC.1

FC.0 0

0.2

0.4

0.6

0.8

1

1 21 41 61 81

FC.1 BR
FC.1 AR
FC.0 BR
FC.0 AR

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81

FC.0 BR FC.0 AR
FC.1 BR FC.1 AR

AlexNet

AlexNet with BN

acc. < 92.75%, 3150 neurons

AlexNet without BN

almost overlap

AlexNet with BN

improved significantly

3150 x 12 / 1024 = 36.9 MB of

malware can be embedded

within 1% accuracy loss.

acc. < 90%, 3300 neurons

58 anti-virus engines, 0 suspicious

Models are recognized as zip files.

Q7. Evasive

Experiments

12-Oct-2218

Malware samples in Exp. 2

2 Public pre-trained models

Malware Size Malware Size

EternalRock 8KB Electro 598KB

Stuxnet 24.4KB Petya 788KB

Nimda 56KB NSIS 1.7MB

Destover 89.7KB Mamba 2.3MB

OnionDuke 123.5KB WannaCry 3.4MB

Mirai 175.2KB Pay2Key 5.35MB

Turla 202KB VikingHorde 7.1MB

Jigsaw 283.5KB Artemis 12.8MB

EquationDrug 372KB Larazus 19.94MB

ZeusVM 405KB

No. Net Length Acc.

1 Vgg19 548.14MB 74.22%

2 Vgg16 527.87MB 73.36%

3 Alexnet 233.1MB 56.52%

4 Resnet101 170.45MB 77.37%

5 Inception 103.81MB 69.86%

6 Resnet50 97.75MB 76.13%

7 Googlenet 49.73MB 62.46%

8 Resnet18 44.66MB 69.76%

9 Mobilenet 13.55MB 71.88%

10 Squeezenet 4.74MB 58.18%

Public pre-trained models from PyTorch

The models are trained with ImageNet dataset.

10 pre-trained models, 19 malware samples,

184 malware-embedded models

12-Oct-22 19

Large-sized models

almost no performance loss

For medium- and small-sized models, the increased

malware has a greater impact on the performance.

Experiments

12-Oct-2220

Comparison with StegoNet2
✓ Higher embedding rate

✓ Lower performance impact

Mitigation

12-Oct-2221

Possible countermeasures

Parameters cannot be modified.

Changes in parameters

fine-tuning pruning model

compression

Professional users

Preparation Delivery Execution

vs

Malicious user Normal user

Verify

Anti-virus software on

end-user devices

entropy
7.3873 7.3060

A new embedding method fast substitution

• Higher embedding rate

• Lower performance impact

Embedding capacity of a DNN model

• Studying the relationship between performance impact and model
structure, layer, and malware size

• Restoring the performance

Potential threat on public models

Possible countermeasures

• Professional users, DNN markets, and end users

Summary

12-Oct-2222

Q&A

EvilModel: Hiding Malware Inside of
Neural Network Models

EvilModel: Hiding Malware Inside of
Neural Network Models

Zhi Wang, Chaoge Liu, Xiang Cui

26th IEEE Symposium on Computers and Communications (IEEE ISCC 2021)

Athens, Greece

September 2021

Thanks for listening!

