26th IEEE Symposium on Computers and Communications (IEEE ISCC 2021)

© Security

EvilModel: Hiding Malware Inside of Neural Network Models

Zhi Wang, Chaoge Liu, Xiang Cui

Athens, Greece September 2021

University of Chinese Academy of Sciences

Contents

- Background and Motivation
- Technical Design
- Experiments and Evaluation
- Mitigation

- Advanced malware campaigns are the main threats to computer security.
- Attackers need to communicate with the malware covertly to send customized commands and payloads.
- Some methods of covertly transmitting messages are widely used in the wild, but they are not suitable for large-sized binary payloads.

Decode at https://stylesuxx.github.io/steganography/

For delivering large-sized malware, some attackers attach the malware to benign-looking carriers.

4 12-Oct-22

A neural network model has many neurons, with millions of parameters inside.

Can malware be hidden inside of neural networks?

YES

"Neural Network Backdoor"

 1288
 58
 0A
 00
 00
 34
 39
 33
 31
 36
 39
 37
 35
 33
 X
 493169753

 1302
 36
 71
 07
 58
 0A
 00
 00
 34
 39
 33
 31
 36
 39
 6q
 X
 493169753

 1302
 36
 71
 07
 58
 0A
 00
 00
 34
 39
 33
 31
 36
 39
 6q
 X
 493169

 1316
 39
 32
 31
 36
 71
 08
 58
 0A
 00
 00
 34
 39
 33
 9216q
 X
 493169

 1330
 37
 39
 33
 38
 37
 38
 34
 71
 09
 65
 2E
 00
 0F
 00
 7938784q
 e.

 1344
 00
 00
 00
 90
 9D
 2D
 57
 3F
 E6
 33
 BE
 3F
 D4
 .-W?.3.?.

 1358
 47
 D9
 3F
 <td

Advantage

- Disassembled malware -> Evade detection.
- Redundant neurons -> No significant performance loss.
- Large size models -> Large size malware.
- Don't rely on software vulnerabilities.
- Wide application of AI -> Universal.

"Neural Network Backdoor"

Concept

Low embedding rate, high performance loss, extra info

Introduction

Fast substitution

- ✓ Higher embedding rate ✓ Lower performance loss
- ✓ No extra info

✓ Capable of different models

Embedding capacity of DNN models

Embedding impact on model performance

Ethical Considerations. The combination of neural networks and cyber attacks is a forwarding trend. We intend to provide a possible scenario for security researchers and vendors to mitigate this kind of attack in advance.

Technical Design

32 bits floating-point number

Technical Design

Prefix: 0x3C 0x38 0xBC 0xB8

Technical Design

Fast substitution

Overall Workflow

Attackers

delivering a payload

- Prepare the model (design a model, or download a pretrained model)
- Train or fine-tune the model

- Embed the malware in the model
- Evaluate the performance
- Retrain the model if the loss exceeds an acceptable range
- Publish the malware-embedded
 model

Receiver

a program injected on target device

- Receive the model.
- Extract malware from the model
- Check the integrity
- Execute the malware

Experiments Setup

Self-trained model

⁺ Public pre-trained models OPyTorch

10 pre-trained models on ImageNet from PyTorch public repositories

No.	Net	Length	Acc.
1	Vgg19	548.14MB	74.22%
2	Vgg16	527.87MB	73.36%
3	Alexnet	233.1MB	56.52%
4	Resnet101	170.45MB	77.37%
5	Inception	103.81MB	69.86%
6	Resnet50	97.75MB	76.13%
7	Googlenet	49.73MB	62.46%
8	Resnet18	44.66MB	69.76%
9	Mobilenet	13.55MB	71.88%
10	Squeezenet	4.74MB	58.18%

Self-trained model

- i) Does the method work?
- ii) How much malware can be embedded in the model?
- iii) What is the performance degradation on the model?
- iv) Does batch normalization help?
- v) Which layer is more suitable for embedding?
- vi) How to restore the accuracy by retraining?
- vii) Can the malware-embedded model pass the security scan by anti-virus engines?

IN UEST Malware samples in Exp. 1

No.	Hash	Length	Туре	VirusTotal
1	4a44 3161	8.03KB	DLL	48/69
2	6847 b98f	6KB	DLL	33/66
3	9307 9c69	14.5KB	EXE	62/71
4	5484 b0f3	18.06KB	RTF	32/59
5	83dd eae0	58.5KB	EXE	67/71
6	7b2f 8c43	56KB	EXE	63/71
7	e906 8c65	64.27KB	EXE	64/71
8	23e8 5ee1	78KB	XLS	40/61

- 1. https://github.com/InQuest/malware-samples
- 2. Hash are the first 4 bytes of SHA256
- 3. VitusTotal are the detection rate in VirusTotal (virus reported engines / all participated engines)

1 Q1. Does the method work?					no	BN	BI	N		
		FC.1	,12KB FC.0	, 18.75KB	FC.1	FC.0	FC.1	FC.0		
	1	8.03KB	1	1	93.44%	93.44%	93.75%	93.74%		
	2	6KB	1	1	93.45%	93.43%	93.75%	93.73%		
	3	14.5KB	2	1	93.44%	93.42%	93.75%	93.69%	No huge	
ጒ	4	18.06KB	2	1	93.43%	93.44%	93.75%	93.70%	degradation	<u>ן</u>
W	5	58.5KB	5	4	93.44%	93.44%	93.75%	93.68%		
M	6	56KB	5	3	93.45%	93.44%	93.74%	93.70%	It work	(S.
	· · ·	5x5x256=6400	4096	4096	Output 10x1	.44%	93.7	5%		
		FC.0	FC.1 (BN)	FC.2 ReLU					No hash char	ıge
14 12-	-Oct-22	2 (BN)	ReLU	10X1						

Structure	Initial	Lover	No. of replaced neurons with Acc.					
Structure	accuracy	Layer	93%	(-1%)	90%	80%		
no BN	93.44%	FC.1	1785	2020	2305	2615		
		FC.0	220	600	1060	1550		
BN	93:75%	FC.1	2105	2285	2900	3290		
		FC.0	40	55	160	3290		

 $2285 \times 12 / 1024 = 26.8 \text{ MB}$ of malware can be embedded

within 1% accuracy loss.

Q5. Which layer is more suitable for embedding? FC layers FC layers fc.1 0.8 0.8 fc.0 fc.1 0.6 0.6 conv.4 conv.0 conv.2 conv.1 conv.0 conv.2 conv.0 conv.0 conv.4 0.4 0.4 fc.0 conv.1 conv.1 -conv.1 conv.2 conv.2 conv.3 conv.3 conv.3 0.2 0.2 conv.3 conv.4 conv.4 fc.0 fc.0 -fc.1 fc.1 0 Ω 4100% 6100% 2100% 4100% 100% 2100% 8100% 10100% 100% 6100% 8100% 10100% AlexNet AlexNet with BN

For fully connected layers, FC.1 is more suitable for embedding; for convolution layers, conv.0 is more suitable.

Q6. How to restore the accuracy by retraining?

Public pre-trained models

Public pre-trained models from PyTorch

No.	Net	Length	Acc.
1	Vgg19	548.14MB	74.22%
2	Vgg16	527.87MB	73.36%
3	Alexnet	233.1MB	56.52%
4	Resnet101	170.45MB	77.37%
5	Inception	103.81MB	69.86%
6	Resnet50	97.75MB	76.13%
7	Googlenet	49.73MB	62.46%
8	Resnet18	44.66MB	69.76%
9	Mobilenet	13.55MB	71.88%
10	Squeezenet	4.74MB	58.18%

10 pre-trained models, 19 malware samples,184 malware-embedded models

Malware samples in Exp. 2

Malware	Size	Malware	Size
EternalRock	8KB	Electro	598KB
Stuxnet	24.4KB	Petya	788KB
Nimda	56KB	NSIS	1.7MB
Destover	89.7KB	Mamba	2.3MB
OnionDuke	123.5KB	WannaCry	3.4MB
Mirai	175.2KB	Pay2Key	5.35MB
Turla	202KB	VikingHorde	7.1MB
Jigsaw	283.5KB	Artemis	12.8MB
EquationDrug	372KB	Larazus	19.94MB
ZeusVM	405KB		

The models are trained with ImageNet dataset.

2

Fast substitution	Vgg19	Vgg16	AlexNet	$\operatorname{Resnet101}$	Inception	Resnet50	Googlenet	Resnet18	Mobilenet	Squeezenet
rast substitution	$548.14 \mathrm{MB}$	$527.87 \mathrm{MB}$	$233.1 \mathrm{MB}$	$170.45 \mathrm{MB}$	$103.81 \mathrm{MB}$	$97.75 \mathrm{MB}$	$49.73 \mathrm{MB}$	$44.66 \mathrm{MB}$	$13.55 \mathrm{MB}$	$4.74 \mathrm{MB}$
Base	74.218%	73.360%	56.518%	77.374%	69.864%	76.130%	62.462%	69.758%	71.878%	58.178%
EternalRock, 8KB	74.216%	73.360%	56.516%	77.366%	69.870%	76.120%	62.462%	69.754%	71.818%	58.074%
Stuxnet, 24.4KB	74.00007	70 OF 407	F.C. F0007	77.370%	69.868%	76.148%	62.462%	69.742%	71.748%	57.630%
Nimda, 56KB	Large	-sized mo	odels	77.350%	69.870%	76.112%	62.462%	69.746%	71.570%	56.640%
Destover, 89.7KB	lmost no	performa	ance loss	77.384%	69.874%	76.040%	62.462%	69.702%	71.314%	56.838%
OnionDuke, 123.5KB	74.224%	73.368%	56.502%	77.362%	or mediu	m- and s	mall-size	d models	s, the incr	eased
Mirai, 175.2KB	74.218%	73.366%	56.516%	77.352% n	halware h	as a grea	ater impa	ct on the	performa	ance.
Turla, 202KB	74.214%	73.352%	56.502%	77.336%	09.00270	10.04070	02.40270	09.10070	10.93270	02.11470
Jigsaw, 283.5KB	74.228%	73.372%	56.486%	77.328%	69.966%	75.990%	62.462%	69.664%	70.976%	51.364%
EquationDrug, 372KB	74.198%	73.370%	56.504%	77.296%	69.916%	76.026%	62.462%	69.672%	71.038%	42.648%
ZeusVM, 405KB	74.210%	73.360%	56.490%	77.280%	69.898%	76.028%	62.462%	69.568%	71.142%	41.144%
Electro, 598KB	74.218%	73.348%	56.484%	77.288%	69.880%	75.990%	62.462%	69.562%	67.106%	14.822%
Petya, 788KB	74.240%	73.382%	56.478%	77.242%	69.924%	75.898%	62.462%	69.486%	67.094%	6.912%
NSIS, 1.7MB	74.250%	73.390%	56.466%	77.164%	69.528%	75.800%	62.462%	69.238%	68.496%	10.318%
Mamba, 2.30MB	74.212%	73.350%	56.466%	77.082%	69.556%	75.672%	62.462%	69.108%	60.534%	0.814%
WannaCry, 3.4MB	74.210%	73.372%	56.446%	76.976%	69.092%	75.642%	62.462%	68.926%	24.262%	0.100%
Pay2Key, 5.35MB	74.206%	73.358%	56.498%	76.936%	68.594%	75.440%	62.462%	68.340%	0.192%	-
VikingHorde, 7.1MB	74.214%	73.350%	56.436%	76.734%	64.682%	75.074%	62.462%	67.350%	0.108%	-
Artemis, 12.8MB	74.190%	73.364%	56.408%	74.502%	61.252%	70.062%	51.256%	60.272%	-	-
Lazarus, 19.94MB	74.180%	73.342%	56.376%	70.720%	54.470%	59.490%	0.526%	20.882%	-	-

Comparison with StegoNet

✓ Higher embedding rate

✓ Lower performance impact

	Mathod	Modal	Dasa	EquationDrug	ZeusVM	NSIS	Mamba	WannaCry	VikingHorde	Artemis
	Method	Woder	Dase	372KB	405KB	1.7MB	2.3MB	3.4MB	7.1MB	12.8MB
		Vgg19	74.2%	74.2%	74.2%	74.3%	74.2%	74.2%	74.2%	74.2%
		Vgg16	73.4%	73.4%	73.4%	73.4%	73.4%	73.4%	73.4%	73.4%
		Alexnet	56.5%	56.5%	56.5%	56.5%	56.5%	56.4%	56.4%	56.4%
EvilModel	Fast	Resnet101	77.4%	77.3%	77.3%	77.2%	77.1%	77.0%	76.7%	74.5%
Lynnvloder	Substitution	Inception	69.9%	69.9%	69.9%	69.5%	69.6%	69.1%	64.7%	61.3%
		Resnet18	69.8%	69.7%	69.6%	69.2%	69.1%	68.9%	67.4%	60.3%
		Mobilenet	71.9%	71.0%	71.1%	68.5%	60.6%	24.3%	0.1%	-
	LSB Substitution	Inception	78.0%	78.2%	77.9%	78.0%	78.3%	78.2%	78.1%	77.3%
		Resnet18	70.7%	69.3%	71.2%	70.5%	72.1%	71.3%	69.3%	61.3%
		Mobilenet	70.9%	0.2%	0.2%	0.2%	0.2%	0.1%	-	-
	Resilience Training	Inception	78.0%	78.3%	78.4%	78.4%	77.6%	78.4%	77.8%	78.1%
		Resnet18	70.7%	71.1%	71.2%	70.4%	70.9%	71.3%	68.2%	69.7%
StegoNet		Mobilenet	70.9%	71.2%	68.5%	32.5%	6.1%	0.7%	-	-
Stegorier	Value-	Inception	78.0%	78.3%	78.4%	77.2%	78.4%	78.1%	77.6%	77.3%
	Mapping	Resnet18	70.7%	71.1%	70.2%	72.1%	71.0%	70.4%	70.3%	70.9%
	Mapping	Mobilenet	70.9%	69.2%	71.0%	54.7%	49.3%	-	-	-
	Sign-	Inception	78.0%	77.4%	78.2%	78.0%	-	-	-	-
	Mapping	Resnet18	70.7%	71.1%	70.8%	69.5%	-	-	-	-
	Mapping	Mobilenet	70.9%	68.3%	-	-	-	-	-	-

2

Mitigation

Summary

A new embedding method fast substitution

- Higher embedding rate
- Lower performance impact

Embedding capacity of a DNN model

- Studying the relationship between performance impact and model structure, layer, and malware size
- Restoring the performance

Potential threat on public models

Possible countermeasures

• Professional users, DNN markets, and end users

EvilModel: Hiding Malware Inside of Neural Network Models

THE REPORT OF THE PARTY OF THE

26th IEEE Symposium on Computers and Communications (IEEE ISCC 2021)

EvilModel: Hiding Malware Inside of Neural Network Models

Zhi Wang, Chaoge Liu, Xiang Cui

Athens, Greece September 2021

Thanks for listening!

★ 图 斜 学 院 信息工程研究所 INSTITUTE OF INFORMATION ENGINEERING.CAS

University of Chinese Academy of Sciences

